Abstract
We introduce and optimize a fabrication procedure that employs both femtosecond laser machining and hydrofluoric acid etching for cutting holes or voids in slabs of lithium niobate and lithium tantalate. The fabricated structures have 3 μm lateral resolution, a lateral extent of at least several millimeters, and cut depths of up to 100 μm. Excellent surface quality is achieved by initially protecting the optical surface with a sacrificial silicon dioxide layer that is later removed during chemical etching. To optimize cut quality and machining speed, we explored various laser-machining parameters, including laser polarization, repetition rate, pulse duration, pulse energy, exposure time, and focusing, as well as scanning, protective coating, and etching procedures. The resulting structures significantly broaden the capabilities of terahertz polaritonics, in which lithium niobate and lithium tantalate are used for terahertz wave generation, imaging, and control. The approach should be applicable to a wide range of materials that are difficult to process by conventional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.