Abstract

Single-strand DNA from bacteriophage phi X174 am3 is treated with mild acid and heat to produce increasing numbers of apurinic sites per molecule. Samples are assayed, either directly or after additional chemical reactions, by electroporation into the recipient E. coli strain HF4714(su-1+). Modified apurinic sites are produced by reactions with O-methyl- or O-benzyl-hydroxylamine, and reduced apurinic sites by reactions with sodium borohydride. Reversion mutation frequencies are significant only if the recipient strain is SOS-induced (by growth after UV irradiation). A simple apurinic site at the target gives rise to mutation (a transversion) with a probability of 0.07, while the modified or reduced apurinic site has a mutagenic efficiency of 0.22-0.27 or 0.29, respectively. The open ring form of deoxyribose may account for the 3-4-fold increased mutagenicity with altered apurinic lesions. Also considered are effects by temperature and cyclobutane pyrimidine dimers on mutagenicity and the relatively invariant survival curves that obtain regardless of chemical alterations at the apurinic sites and/or SOS induction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call