Abstract

Chemical-Looping Combustion (CLC) has emerged in recent years as a very promising combustion technology for power plants and industrial applications with inherent CO2 capture, which circumvent the energy penalty imposed on other competing technologies. The process is based on the use of a metal oxide to transport the oxygen needed for combustion in order to prevent direct contact between the fuel and air. CLC is performed in two interconnected reactors, and the CO2 separation inherent to the process practically eliminates the energy penalty associated with gas separation. The CLC process was initially developed for gaseous fuels, and its application was subsequently extended to solid fuels. The process has been demonstrated in units of different size, from bench scale to MW-scale pilot plants, burning natural gas, syngas, coal and biomass, and using ores and synthetic materials as oxygen-carriers.An overview of the status of the process, starting with the fundamentals and considering the main experimental results and characteristics of process performance, is made both for gaseous and solid fuels. Process modelling of the system for solid and gaseous fuels is also analysed. The main research needs and challenges both for gaseous and solid fuel are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.