Abstract
Sustainability has become the biggest concern of the semiconductor industry because of hundreds of high-purity organic and inorganic compounds involved in manufacturing semiconductors not being treated economically. The aim of this study was to understand how semiconductor companies manage their chemical wastes, by analyzing the U.S. Environmental Protection Agency’s Toxics Release Inventory data for hydrogen fluoride, nitric acid, ammonia, N-methyl-2-pyrrolidone, hydrochloric acid, nitrate compounds, and sulfuric acid. Cluster analysis was adopted to classify the U.S. semiconductor companies into different performance groups according to their waste management approaches. On the basis of the results, twenty-seven companies were classified in the “best performance” category for the waste management of two or more chemicals. However, 15 companies were classified in the worst performance categories. The semiconductor companies can refer to our results to understand their performance and which companies they should benchmark regarding chemical waste management. City governments can also refer to our results to employ suitable policies to reduce the negative impacts of the chemical waste from regional semiconductor companies.
Highlights
The semiconductor industry is one of the largest industries in the world with a production value of approximately US$400 billion [1]
The results indicate how each chemical was managed in the semiconductor industry and which companies used the best chemical waste management techniques
We start with the discussion of clustering results regarding Hydrogen Fluoride (HF), where four types of waste management approaches were clustered
Summary
The semiconductor industry is one of the largest industries in the world with a production value of approximately US$400 billion [1]. Numerous approaches have been developed to treat the pollution arising from different manufacturing processes Several methods, such as distillation, adsorption, membrane separation, extraction, freeze concentration, photolysis, and melt crystallization, have been explored to recycle or recover organic solvents from a waste photoresist stripper [5,6]. Wastes such as chemical mechanical polishing wastewater can be treated to effectively reduce the suspension of silica particles and completely remove cetyltrimethylammonium bromide [7]. A variety of methods have been developed and applied to treat hydrofluoric acid wastewater, including chemical coagulation with polyaluminum chlorides or aluminum sulfates, calcium salt precipitation, montmorillonite electrocoagulation, ion exchange, precipitate flotation, and reverse osmosis with montmorillonite or calcite [9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.