Abstract

Some Chinese herbal medicine needs to be processed before it can be used as medicine, especially toxic Chinese medicine. Highly toxic Aconti Kusnezoffii Radix(Caowu in Chinese) is widely used in traditional Chinese medicine and Mongolian medicine. In traditional Chinese medicine, Caowu is usually processed by boiling with water(CW) until no white part inside and being tasted without tongue-numbing. In Mongolian medicine, it is usually soaked in Chebulae Fructus(Hezi in Chinese) decoction for several days(CH). Both methods could reduce toxicity according to reports. The biggest difference between CW and CH is that CW needs to be heated for 4-6 h, while CH needs Hezi as processing adjuvants. To explore the toxicity reduction mechanism of CW and CH, we studied the contents of various compounds in Caowu processed by two methods by UPLC-Orbitrap-MS. The results indicated that CW had 14 new ingredients, such as 14-O-anisoylneoline and dehydro-mesaconitine, while N-demethyl-mesaconitine and aconitine disappeared. At the same time, it could significantly decrease the content of diester diterpenoid alkaloids and increase the contents of monoester diterpenoid alkaloids and amine-diterpenoid alkaloids. CH had 9 new ingredients from Hezi, like gallic acid, chebulic acid and shikimic acid. Neither the kinds nor the contents of compositions from Caowu in CH changed little. This suggested that the processing mechanism of CW reduced highly toxic components(diester diterpenoid alkaloids) and increased the content of lowly toxic components(monoester diterpenoid alkaloids and amine-diterpenoid alkaloids). Attenuated principle of CH may be related to the components of Hezi. In this experiment, the conclusion shows that the chemical constituents of CW and CH are essentially different, and the two methods have different toxicity reduction principles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.