Abstract

The continuous functionalization of nanoparticles in the gas-phase directly after their generation, chemical vapor functionalization, is studied with ZnO and 1-hexanol as a model system using two reactors in series. In the first reactor ZnO nanoparticles are synthesized in the gas-phase from diethylzinc and oxygen at 1,073 K with grain sizes of 13 nm as determined by Rietveld refinement of X-ray diffractograms. The second reactor, connected at the exit of the first reactor and kept at lower temperatures (573, 673, and 773 K), is used as a functionalization chamber. At the connection point of the two reactors, the vapor of 1-hexanol is injected to react with the surface of ZnO nanoparticles in the gas phase. The process has been analyzed by quadrupole mass spectrometry to obtain information about optimal conditions for functionalization. Dynamic light scattering data show that the functionalized particles have substantially improved colloidal dispersibility with hydrodynamic diameters of 60 nm. Diffuse reflectance fourier transform infrared spectra and 1H nuclear magnetic resonance spectra are consistent with 1-hexanol adsorbed at the particle surface acting as a functionalizing agent. The agglomerate size is substantially reduced owing to chemical vapor functionalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.