Abstract
Chemical vapor deposition was applied to synthetize nanostructured deposits containing several sorts of nanoobjects (i.e., nanoballs, irregular particles, and nanowires). Analytical techniques, that is, high-resolution transmission electron microscopy, scanning electron microscopy, electron dispersive X-ray analysis, selected area electron diffraction, and X-ray photoelectron spectroscopy, showed that unlike nanoballs and particles composed of crystalline germanium, the layer was made of chromium germanide CrGex. The nanowires possessed a complex structure, namely a thin crystalline germanium core and amorphous CrGex coating. The composition of the nanowire coating was [Cr]/[Ge] = 1:(6–7). The resistance of the nanowire–deposit system was estimated to be 2.7 kΩ·cm using an unique vacuum contacting system.
Highlights
Metal silicides and germanides belong to an extensively studied group of materials offering a wide variety of properties to meet various requirements in battery, optical, and electronic applications, as well as catalysis
Molybdenum substrates that were placed at the very beginning of the second part of the furnace were covered by a deposit (Figure 1a) containing chromium, germanium, and oxygen (Supporting Information File 1, Figure S1)
Linear EDX analysis (Figure 2) and elemental mapping (Supporting Information File 1, Figure S3) of a single nanowire showed that it was composed of Cr, Ge, O and C
Summary
Metal silicides and germanides belong to an extensively studied group of materials offering a wide variety of properties to meet various requirements in battery, optical, and electronic applications, as well as catalysis. Molybdenum substrates that were placed at the very beginning of the second part of the furnace were covered by a deposit (Figure 1a) containing chromium, germanium, and oxygen (Supporting Information File 1, Figure S1). Linear EDX analysis (Figure 2) and elemental mapping (Supporting Information File 1, Figure S3) of a single nanowire showed that it was composed of Cr, Ge, O (from an oxidized surface) and C (a standard impurity in EDX instruments).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.