Abstract

Diamond is an excellent candidate material for use in electronic and wear resistant coating applications due to its hardness, strength, thermal conductivity, high electron drift velocity, chemical and thermal stability, radiation hardness and optical transmission. Electronic devices of particular interest include high power/high frequency devices and devices to be utilized in high temperature, chemically harsh and/or high radiation flux environments. The recent development of techniques for growth of crystalline diamond films using low pressure gases has created the potential for growing thin films for such electronic devices or wear resistant coatings. In this research, diamond thin films grown on silicon by microwave plasma enhanced chemical vapor deposition were characterized by a variety of materials analysis techniques including secondary ion mass spectroscopy (SIMS), x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and infrared spectroscopy (IR). This paper reports the characterization of these polycrystalline diamond films and discusses the impurities, bonding, and structure of the as-grown diamond films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.