Abstract

In order to enhance the interfacial adhesion between wood fiber and an unsaturated polyester matrix (UPE), acrylic acid (acrylic acid)/poly(methyl methacrylate), and (acrylic acid)/silanization (AAS) were used to treat the wood fibers. The mechanical properties and the impact fracture surfaces of the prepared composites were measured and characterized, and the fracture mechanism of these kinds of composites was analyzed. The results showed that the AAS composites possessed the optimum comprehensive mechanical properties. When the weight fraction of wood fiber was 16%, the flexural strength and flexural modulus of the AAS composites were increased by 28.9 and 51.8%, respectively, compared to those of untreated composites. The highest tensile strength and lowest water absorption were also noted for AAS composites. These composites possessed the strongest interfacial adhesion between wood fiber and the UPE matrix. J. VINYL ADDIT. TECHNOL., 19:18–24, 2013. © 2013 Society of Plastics Engineers

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.