Abstract

This study focuses on the chemical changes in basaltic rocks in fossil low- and high-temperature hydrothermal systems in Iceland. The method used takes into account the amount of dilution caused by vesicle and vein fillings in the rocks. The amount of dilution allows a calculation of the primary concentration of the immobile element Zr, and by multiplying the composition of the altered rock by the ratio of Zr (protolith)/Zr (altered rock) one can compute the mass addition caused by the dilution of the void fillings, and also make a direct comparison with the likely protoliths from the same areas. The samples were divided into three groups; two from Tertiary fossil high-temperature systems (Hafnarfjall, Geitafell), and the third group from a low temperature, zeolite-altered plateau basalt succession. The results show that hydrothermally altered rocks are enriched in Si, Al, Fe, Mg and Mn, and that Na, K and Ca are mobile but show either depletion or enrichment. The elements that are immobile include Zr, Y, Nb and probably Ti. The two high-temperature systems show quite similar chemical alteration trends, an observation which may apply to Icelandic fresh water high-temperature systems in general. The geochemical data show that the major changes in the altered rocks from Icelandic geothermal systems may be attributed to addition of elements during deposition of pore-filling alteration minerals. A comparison with seawater-dominated basalt-hosted hydrothermal systems shows much greater mass flux within the seawater systems, even though both systems have similar alteration assemblages. The secondary mineral assemblages seem to be controlled predominantly by the thermal stability of the alteration phases and secondarily by the composition of the hydrothermal fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.