Abstract
To develop a convenient chemical transformation mediated CRISPR/Cas9 (CT-CRISPR/Cas9) system for genome editing in Escherichia coli. Here, we have constructed a CT-CRISPR/Cas9 system, which can precisely edit bacterial genome (replacing, deleting, inserting or point mutating a target gene) through chemical transformation. Compared with the traditional electroporation mediated CRISPR/Cas9 (ET-CRISPR/Cas9) system, genome editing with the CT-CRISPR/Cas9 system is much cheaper and simpler. In the CT-CRISPR/Cas9 system, we observed efficient genome editing on LB-agar plates. The CT-CRISPR/Cas9 system has successfully modified the target gene with the editing template flanked by short homologous DNA fragments (~ 50bp) which were designed in primers. We used the lab-made CaCl2 solution to perform the CT-CRISPR/Cas9 experiment and successfully edited the genome of E. coli. Potential application of the CT-CRISPR/Cas9 system in high-throughput genome editing was evaluated in two E. coli strains by using a multiwell plate. Our work provides a simple and cheap genome-editing method, that is expected to be widely applied as a routine genetic engineering method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.