Abstract
Polar phosphorylated metabolites are involved in a variety of biological processes and play vital roles in energetic metabolism, cofactor regeneration, and nucleic acid synthesis. However, it is often challenging to interrogate polar phosphorylated metabolites and compounds from biological samples. Liquid chromatography-mass spectrometry (LC/MS) now plays a central role in metabolomic studies. However, LC/MS-based approaches have been hampered by the issues of the low ionization efficiencies, low in vivo concentrations, and less chemical stability of polar phosphorylated metabolites. In this work, we synthesized paired reagents of light and heavy isotopomers, 2-(diazomethyl)phenyl)(9-methyl-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl)methanone (DMPI) and d3-(2-(diazomethyl)phenyl)(9-methyl-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl)methanone (d3-DMPI). The paired reagents of DMPI and d3-DMPI carry diazo groups that can efficiently and selectively react with the phosphate group on polar phosphorylated metabolites under mild conditions. As a proof of concept, we found that the transfer of the indole heterocycle group from DMPI/d3-DMPI to ribonucleotides led to the significant increase of ionization efficiencies of ribonucleotides during LC/MS analysis. The detection sensitivities of these ribonucleotides increased by 25-1137-fold upon DMPI tagging with the limits of detection (LODs) being between 7 and 150 amol. With the developed method, we achieved the determination of all the 12 ribonucleotides from a single mammalian cell and from a single stamen of Arabidopsis thaliana. The method provides a valuable tool to investigate the dynamic changes of polar phosphorylated metabolites in a single cell under particular conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.