Abstract

Post-translational modification of the histone proteins in chromatin plays a central role in epigenetic control of DNA-templated processes in eukaryotic cells. Developing methods that enable the structure of histones to be manipulated is therefore essential to understand the biochemical mechanisms underlying genomic regulation. Here we present a synthetic biology method to engineer histones bearing site-specific modifications on cellular chromatin using protein trans-splicing. We genetically fused the N-terminal fragment of ultrafast split-intein to the C-terminus of histone H2B, which upon reaction with a complementary synthetic C-intein, generated labeled histone. Using this approach, we incorporated various non-native chemical modifications to chromatin in vivo with temporal control. Furthermore, the time and concentration dependence of protein trans-splicing performed in nucleo enabled us to examine differences in the accessibility of the euchromatin and heterochromatin regions of the epigenome. Finally, we used protein trans-splicing to semi-synthesize a native histone modification, H2BK120 ubiquitination, in isolated nuclei, and show that this can trigger downstream epigenetic cross-talk of H3K79 methylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.