Abstract

The cGAS‐STING pathway is known for its role in sensing cytosolic DNA introduced by a viral infection, bacterial invasion or tumorigenesis. Free DNA is recognized by the cyclic GMP‐AMP synthase (cGAS) catalyzing the production of 2’,3’‐cyclic guanosine monophosphate‐adenosine monophosphate (2’,3’‐cGAMP) in mammals. This cyclic dinucleotide acts as a second messenger, activating the stimulator of interferon genes (STING) that finally triggers the transcription of interferon genes and inflammatory cytokines. Due to the therapeutic potential of this pathway, both the production and the detection of cGAMP via fluorescent moieties for assay development is of great importance. Here, we introduce the paralleled synthetic access to the intrinsically fluorescent, cyclic dinucleotides 2’3’‐cthGAMP and 3’3’‐cthGAMP based on phosphoramidite and phosphate chemistry, adaptable for large scale synthesis. We examine their binding properties to murine and human STING and confirm biological activity including interferon induction by 2’3’‐cthGAMP in THP‐1 monocytes. Two‐photon imaging revealed successful cellular uptake of 2’3’‐cthGAMP in THP‐1 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.