Abstract

AbstractAlthough native chemical ligation has enabled the synthesis of hundreds of proteins, not all proteins are accessible through typical ligation conditions. The challenging protein, 125‐residue human phosphohistidine phosphatase 1 (PHPT1), has three cysteines near the C‐terminus, which are not strategically placed for ligation. Herein, we report the first sequential native chemical ligation/deselenization reaction. PHPT1 was prepared from three unprotected peptide segments using two ligation reactions at cysteine and alanine junctions. Selenazolidine was utilized as a masked precursor for N‐terminal selenocysteine in the middle segment, and, following ligation, deselenization provided the native alanine residue. This approach was used to synthesize both the wild‐type PHPT1 and an analogue in which the active‐site histidine was substituted with the unnatural and isosteric amino acid β‐thienyl‐l‐alanine. The activity of both proteins was studied and compared, providing insights into the enzyme active site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.