Abstract

In this work, a nickel ferrite (NiFe2 O4 )/nitrogen-doped-graphene (NG)/cellulose composite (NiFe2 O4 /NG/cellulose) was successfully synthesized through a facile chemical route, and its antibacterial potential was evaluated. The synthesized NiFe2 O4 /NG/cellulose composite was characterized by performing morphological and structural analyses. The results showed the successful formation of NiFe2 O4 -nanoparticles with a spherical shape and a size ranging from 15 to 200 nm. Energy-dispersive X-ray results confirmed the presence of various elements (carbon, nitrogen, oxygen, iron, and nickel) in the reaction mixture. The X-ray diffraction pattern showed the face-centered-cubic nature of the particles. In addition, antibacterial activity against Escherichia coli (Gram-negative bacteria) and Bacillus subtilis (Gram-positive bacteria) was evaluated with different concentrations of NiFe2 O4 /NG/cellulose composite (0-50 μg/mL). Inhibitory activity increased with increasing concentrations of NiFe2 O4 /NG/cellulose. The composite's inhibitory activity was slightly higher in E. coli than in B. subtilis due to the differing nature of their cell wall structures. Overall, the chemically synthesized NiFe2 O4 /NG/cellulose composite has the potential as an efficient antibacterial agent for controlling the growth of pathogenic bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call