Abstract

The development of carbohydrate-based antitumor vaccines is an attractive approach towards tumor prevention and treatment. Herein, we focused on the ganglioside GM2 tumor-associated carbohydrate antigen (TACA), which is overexpressed in a wide range of tumor cells. GM2 was synthesized chemically and conjugated with a virus-like particle derived from bacteriophage Qβ. Although the copper-catalyzed azide-alkyne cycloaddition reaction efficiently introduced 237 copies of GM2 per Qβ, this construct failed to induce significant amounts of anti-GM2 antibodies compared to the Qβ control. In contrast, GM2 immobilized on Qβ through a thiourea linker elicited high titers of IgG antibodies that recognized GM2-positive tumor cells and effectively induced cell lysis through complement-mediated cytotoxicity. Thus, bacteriophage Qβ is a suitable platform to boost antibody responses towards GM2, a representative member of an important class of TACA: the ganglioside.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call