Abstract

2'-Deoxyoligonucleotides with 5-fluorocytosine residues incorporated at specific positions of the nucleotide sequence are tools of great potential in the study of the catalytic mechanism by which DNA cytosine methyltransferases methylate the 5-position of DNA cytosine residues in specific sequence contexts. Chemical synthesis of such oligonucleotides is described. Two alternative approaches have been developed, one of which proceeds via a fully protected phosphoramidite of 5-fluoro-4-methylmercapto-2'-deoxyuridine 2, the other via a fully protected phosphoramidite of 5-fluoro-2'-deoxycytidine 3. Either building block can be used in automated oligonucleotide synthesis applying standard elongation cycles and deprotection procedures exclusively. The methylmercapto function of 2 is replaced by an amino group in the final ammonia treatment used for cleavage from support and base deprotection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.