Abstract

Lithium cobalt oxide (LiCoO2) is one of the most relevant components in lithium-ion batteries. The array of sought-after features of LiCoO2 depends on its synthesis method. In this work we synthesized and characterized a nanocrystalline LiCoO2 oxide obtained with a wet chemistry synthesis method. The oxide obtained was a homogeneous powder in the nanometric range (5-8 nm) and exhibited a series of improved properties. Characterization by FTIR and UV-Vis techniques led to identifying citrate species as main products in the first step of the synthesis process. X-ray diffraction (XRD), Raman, and transmission electron microscopy (TEM) characterizations led to identifying a pure crystalline phase of the synthesized LiCoO2 oxide. Steady state electrical characterization and solid-state impedance spectroscopy determined the high conductance of the synthesized oxide. All these features are desirable in the design of cathodes for lithium ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call