Abstract

Functional materials impact every area of our lives, from electronic and computing devices to transportation and health. Here we examine the relationship between synthetic discoveries and the scientific breakthroughs that they have enabled. By tracing the development of some important examples, we explore how and why the materials were initially synthesized and how their utility was subsequently recognized. Three common pathways to materials breakthroughs are identified. In a small number of cases, such as the aluminosilicate zeolite catalyst ZSM-5, an important advance is made by using design principles based on earlier work. There are also rare cases of breakthroughs that are serendipitous, such as the buckyball and Teflon. Most commonly, however, the breakthrough repurposes a compound that is already known and was often made out of curiosity or for a different application. Typically, the synthetic discovery precedes the discovery of functionality by many decades; key examples include conducting polymers, topological insulators and electrodes for lithium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.