Abstract

Catalytic strategies were developed to synthesize and release chemicals for applications in fine chemicals, such as drugs and polymers, from a biomass-derived chemical, 5-hydroxymethyl furfural (HMF). The combination of the diene and aldehyde functionalities in HMF enabled catalytic production of acetalized HMF derivatives with diol or epoxy reactants to allow reversible synthesis of norcantharimide derivatives upon Diels-Alder reaction with maleimides. Reverse-conversion of the acetal group to an aldehyde yielded mismatches of the molecular orbitals in norcantharimides to trigger retro Diels-Alder reaction at ambient temperatures and released reactants from the coupled molecules under acidic conditions. These strategies provide for the facile synthesis and controlled release of high-value chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.