Abstract

The use of natural materials has grown in the last years in the plastics industry. Natural lignocellulose fibers derived from agricultural waste present potential to be used as a replacement for glass fibers for polymer reinforcement, leading to lower CO2 footprint products. However, cellulose fibers are hydrophilic and polar and as a result of that, incompatible with hydrophobic polymers such as polypropylene. For this reason, a surface modification on the cellulose fiber is required. This work focuses on the modification of the cellulose fibers to improve the compatibility with polypropylene. Wheat straw fibers derived from agricultural waste were scoured with the purpose to remove lignin, hemicellulose and pectin to facilitate the defibrillation. The fibers were then esterified using acetic anhydride. Thermal gravimetric tests have shown an increase in the thermal stability of the scoured and esterified cellulose fibers, from 246°C for untreated fibers to 292°C and 316°C, respectively. From mechanical tests results it could be seen that the tensile modulus of the composites with esterified cellulose fibers increased 57% compared with the neat PP. Flexural strength increased by 31% and flexural modulus by 70%. The use of esterified fibers led to an improvement of 79% in the impact strength compared with the neat PP. A better compatibilization between fibers and matrix could be seen using maleic anhydride modified polypropylene copolymer as compatibilizer, even with esterified fibers, probably due to residual hydroxyl groups still available on modified cellulose. POLYM. COMPOS., 37:2133–2141, 2016. © 2015 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.