Abstract

The sizing of pineapple leaf fiber (PALF) using cornstarch, polyvinyl acetate (PVA), and carboxymethyl cellulose (CMC) was analyzed, incorporating glycerol and urea as a plasticizer and stabilizer, respectively. The impact of various sizing agents on the physical properties of PALF was evaluated. A comparison between treated and untreated PALF was conducted using FTIR, thermogravimetric analysis (TGA), and tenacity testing. The thermal stability of PALF improved with PVA treatment, showing decomposition temperatures of 363.831°C after modification compared to 343.163°C before modification. Conversely, CMC and cornstarch did not affect PALF's thermal stability. The tenacity test revealed that untreated PALF had the highest breaking force, while the elongation at break increased after sizing. The drying rate of PALF decreased post-sizing, whereas water absorption increased with CMC, PVA, and cornstarch treatments. Overall, sizing agents enhanced the handling and physical properties of PALF, indicating its potential as an alternative material source for textile applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.