Abstract

To study compositional trends associated with open-system thermal metamorphism and shock-induced collisional breakup of L4-6 chondrite parent(s), we used inductively coupled plasma mass spectrometry and radiochemical neutron activation analysis to determine 49 trace elements in 62 falls. Trends for the 49 elements, especially of the 14 rare earth elements in 5 members of a putative L/LL group (Bjurböle, Cynthiana, Holbrook, Knyahinya, Sultanpur) and 9 additional L chondrites (Aïr, Aumieres, Bachmut, Forksville, Kandahar, Kiel, Milean, Narellan, Santa Isabel) differed markedly from those in the remaining normal 46 samples. Here, we report the data for the 14 L and putative L/LL chondrites and 7 LL (Appley Bridge, Athens, Bandong, Ensisheim, Mangwendi, Olivenza, Soko-Banja), analyzed to test the affinity of the putative L/LL suite to well-characterized LL chondrites. Compositional trends of the 14 atypical L chondrites (including Aïr’s unique and possibly contaminated signature) and Mangwendi, an LL6 chondrite, indicate that each is compositionally unrepresentative of well-sampled, whole-rock chondrites. Indeed, half of the unrepresentative chondrites were ≤ 2-g samples. Compositionally, members of the putative L/LL chondrites demonstrate no affinities to normal LL chondrite falls. To establish compositional trends accompanying open-system, thermal episodes involving the L chondrite parent(s), we should ignore data for the 14 unrepresentative L chondrites reported here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call