Abstract

The recently proposed approach based on the analysis of domain-averaged Fermi holes was applied to the study of the nature of metal-metal bonding in transition metal complexes and clusters. The main emphasis was put on the scrutiny of the systems assumed to contain direct multiple metal-metal bonds. The studied systems involve: (1) systems of the type M(2)X(6) (M = Mo, W, X = CH(3)) anticipated to contain metal-metal triple bonds; (2) the molecule of W(2)Cl(8) ((4-)) as the representative of the systems with quadruple metal-metal bonding; (3) diatomic molecules Mo(2) and V(2) considered as the potential candidates for higher than quadruple metal-metal bonding. Although the resulting picture of bonding has been usually shown to agree with the original expectations based on early simple MO models, some examples were also found in which the conclusions of the reported analysis display dramatic sensitivity to the quality of the wave function used for the generation of the Fermi holes. In addition to this we also report some examples where the original theoretical predictions of multiplicity of metal-metal bonds have to be corrected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call