Abstract

Oocytes of the starfish, Asterina pectinifera, are arrested at the G2 phase of meiosis I and possess a prominent germinal vesicle in which maternal stores of nuclear proteins which are destined for use primarily by the early embryo are stored. Germinal vesicle breakdown and subsequent oocyte maturation is triggered by activation of the p34(cdc2)/cyclin B complex, which is present as the preform in the cytoplasm. The aim of the present study was to identify and biochemically characterize in vivo substrates of the kinase. Two nucleic acid binding nuclear proteins designated NAAP1 and NAAP2 were found, both of which contain 345 amino acid residues with pI 3. 6 and which serve as substrates. The only difference between the two proteins was in the primary amino acid sequence at position 51, which is Asn in NAAP1 but Thr in NAAP2. NAAPs are phosphorylated in vivo during oocyte maturation but not at the meiotic G(2) stage. NAAPs are phosphorylated in vitro by the cdc2 kinase on the same site as in vivo. Although there are other evolutionarily conserved consensus sequences for phosphorylation by mitotically active cdc2 kinase in NAAPs and NAAP-derived fragments containing the sequences were efficiently phosphorylated in vitro, these sites in the intact NAAPs were not phosphorylated either in vivo or in vitro. These results suggest that the tertiary structure of NAAPs affects the target specificity of the cdc2 kinase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.