Abstract

The carbon-rich layer at the back-contact interface of a solution-processed Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ZnSn(S,Se) <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> (CZTSSe) absorber is investigated with a combination of surface-sensitive X-ray photoelectron and bulk-sensitive X-ray emission spectroscopy. For absorber deposition, an aqueous ammonium-thioglycolate (ATGL) solution was used, and the “buried” back-contact interface was accessed by cleaving in a liquid nitrogen environment. In the pertinent literature, it is reported that such a carbon layer at the absorber/back-contact interface could have beneficial effects, e.g., to reduce series resistance or increase the short circuit current. Here, a detailed picture of the chemical structure of this carbon-rich layer at the back contact is derived, which consists of carbon (74 ± 7%), selenium (19 ± 4%), and sulfur (7 ± 3%). The selenium in this layer is found as elemental inclusions, possibly from not fully reacted selenium during the absorber production. The sulfur content in this carbon-rich layer is twice that of sulfur in the absorber. A detailed analysis of the chemical environment suggests that residuals from the aqueous ATGL solution are the origin of sulfur in this carbon-rich layer. Furthermore, underneath the carbon-rich layer, S-Mo bonds are found at the Mo back contact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.