Abstract

This paper presents experimental data on the flame structure of laminar premixed ammonia and ammonia/hydrogen flames at different equivalence ratios (φ = 0.8, 1.0 and 1.2) and the laminar flame speed of ammonia/hydrogen flames (φ = 0.7–1.5) at 1 atm. Experimental data were compared with modeling results obtained using four detailed chemical-kinetic mechanisms of ammonia oxidation. In general, all models adequately predict the flame structure. However, for the laminar burning velocity, this is not so. The main nitrogen-containing species present in the post-flame zone in significant concentrations are N2 and NO. Experimental data and numerical simulations show that the transition to slightly rich conditions enables to reduce NO concentration. Numerical simulation indicate that increasing the pressure rise also results into reduction of NO formation. However, when using ammonia as a fuel, additional technologies should be employed to reduce NO formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call