Abstract

The chemical structure of the lipid A component of enterobacterial lipopolysaccharide (LPS) is now known in some detail. For example, lipid A of Escherichia coli consists of a beta(1----6)-linked D-glucosamine disaccharide that carries four (R)-3-hydroxytetradecanoyl groups in positions 2, 3, 2', and 3' and two phosphoryl residues in positions 1 and 4'. The hydroxy fatty acids at positions 2' and 3' are acylated at their 3-hydroxyl groups by dodecanoic acid and tetradecanoic acid, respectively. The hydroxyl groups in positions 4 and 6' are free, the latter serving as the attachment site for the polysaccharide component in intact LPS. On the basis of this structure, E. coli-type lipid A and partial structures thereof have been chemically synthesized (group of T. Shiba, Osaka University, Osaka, Japan) and analyzed for endotoxic activity. In all in vivo and in vitro test systems employed (including lethal toxicity, pyrogenicity, local Shwartzman reactivity, B lymphocyte mitogenicity, macrophage activation, and serologic cross-reactivity with lipid A antiserum), synthetic lipid A has activity identical to that of E. coli lipid A. These findings support the structural proposal for lipid A and prove the previous hypothesis that the endotoxic principle is embedded in lipid A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.