Abstract

This study is for the technoeconomic analysis of an integral facility consisting of wind energy-based electrolytic hydrogen production, bioethanol-based carbon dioxide capture and compression, and direct methanol synthesis. ASPEN Plus was used to simulate the facility producing 97.01 mt (metric tons) methanol/day using 138.37 mt CO2/day and 18.56 mt H2/day. A discounted cash flow diagram for the integral facility is used for the economic analysis at various hydrogen production costs and methanol selling prices. The feasibility analysis is based on a multi-criteria decision matrix consisting of economic and sustainability indicators comparing renewable and non-renewable methanol productions. The overall energy efficiency for the renewable methanol is around 58%. Fixation of carbon reduces the CO2 equivalent emission by around −1.05 CO2e/kg methanol. The electrolytic hydrogen production cost is the largest contributor to the economics of the integral facility. The feasibility analysis based on multi-criteria shows that renewable methanol production may be feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.