Abstract

Extracellular neuronal responses were recorded from the posterior insular cortex following electrical and chemical stimulation of the thalamic reticular nucleus (Rt) regions. In the present study, most neurons (29/32) were first characterized for their responses to electrical stimulation of the superior laryngeal (SL) nerve or glossopharyngeal (IXth) nerve. In the first experiment, 15 neurons in the posterior insular cortex were examined for their responses to electrical stimulation of the Rt regions. It was found that effective stimulation sites to evoke action potentials in the posterior insular cortex were the ventromedial portion of the Rt and its adjacent regions. In the second experiment, 17 neurons in the posterior insular cortex were examined for their responses by pressure injection of glutamate (Glu) into the Rt regions. Of the 17 neurons, 13 were inhibited in the spontaneous discharge rate following injection of Glu into the Rt, and the remaining four were unaffected. Histologically, it was demonstrated that Glu injection sites for the case of inhibition were located near or within the Rt. On the other hand, the injection sites for all four non-responsive neurons were located outside of the Rt. These data suggest that excitation of the Rt (GABAergic neurons) causes depression of the neuronal activity in the thalamic relay nucleus and then this may in turn induce depressed neuronal activity in the posterior insular cortex. The results here indicate that neuronal activity in the posterior insular cortex is controlled by the Rt, which has been reported in other sensory systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.