Abstract

In order to understand the formation mechanism of Cr(VI) in chromium-containing steel slag, X-ray diffractiometry (XRD), X-ray absorption spectroscopy (XAS) in the region of X-ray absorption near edge structure (XANES), and X-ray photoelectron spectroscopy (XPS) measurements were performed for analyzing the chromium contained in the model slag of CaO–SiO2 base. The model slag was annealed under different temperatures and atmospheres to change the chemical state of chromium. XRD results showed that a diffraction peak that can be assigned to CaCrO4 comprising of Cr(VI) was detected in the model–slag sample annealed under a high partial pressure of oxygen (air). XANES results showed that the Cr(VI) concentration in the slag increased by annealing under a high partial pressure of oxygen, while it was very low in the slag sample annealed under a low partial pressure of oxygen. The XANES results were consistent with the XRD results. The formation conditions of Cr(VI) were discussed on the basis of the thermodynamic characteristics of a Ca–Cr–O system. The XPS results for the slag surface were dependent on the leaching tests performed on the slag, while the XANES results were insensitive to the leaching tests. This indicates that Cr(VI) dissolved from only a surface layer of the model slag. The chromium that dissolved from the slag in an aqueous solution by the leaching test was also analyzed and was found to be in the form of Cr(VI); further, its concentration depended on the annealing conditions of the slag.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call