Abstract

TiO2 nanotube-type oxide film on Ti substrate has been fabricated using an electrochemical method, and the chemical bonding state, ultra-fine structures, and surface characteristics of the TiO2 nanotube layer have been investigated. The formation and growth of a self-organized nanotube layer can be achieved directly by anodization in NH4-containing electrolytes. The diameter, length, and wall thickness of the nanotube are significantly affected by anodizing conditions such as applied voltage, current density, and anodizing time. The length limiting factor of nanotube growth was found to be the diffusion of ionic species in the electrolyte. XRD investigations revealed that annealed nanotubes have anatase and rutile structure, and some Ti-peaks from the Ti substrate were observed. From the compositional analysis of TiO2 nanotubes layer using Energy Dispersive Spectroscopy (EDS), Ti, O, and P elements were obtained in the wall nanotube layer. For incorporated P-containing in the TiO2 nanotube layer, various chemical states were presented, which were revealed mostly in the forms of H2PO4, HPO4 2-, and PO4 3-.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call