Abstract

Conjugated polymers can be electrochemically doped to high-conductivity states under applied voltage, but such in situ formed doping structures are dynamic and dissipate when the formation voltage is removed. For some applications it is highly desirable to permanently stabilize the doping after its formation. Here, we report and compare results on four different approaches to chemical stabilization of an emissive and rectifying p–n junction doping structure in a light-emitting electrochemical cell (LEC) application: (i) polymerization of the dopant counter-ions, (ii) polymerization of the counter-ions utilizing a radical-initiator compound, (iii) polymerization of the ion-transport material, and (iv) polymerization of both the counter-ions and the ion-transport material utilizing a radical-initiator compound. We found that approach (i) resulted in LEC devices with poor stability, current rectification and light-emission, and that approach (ii) solely yielded a notable improvement in the light-emission. Approach (iii) resulted in good current rectification and stability, but the overall best results were clearly attained with approach (iv) as such stabilized LEC devices exhibited a respectable current rectification ratio of ∼2000, as well as a decent light-emission efficiency and long-term stability under idle conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.