Abstract

This research was conducted in order to fabricate stable polyethylene oxide (PEO)-based transmucosal systems of a Δ9-tetrahydrocannabinol (THC) prodrug, a hemisuccinate ester, using a hot-melt method. Since Δ9-tetrahydrocannabinol (THC-HS) was heat labile, a series of processing aids were evaluated in order to facilitate hot-melt production at lower temperatures, thereby reducing THC-HS degradation. The stability of THC-HS was influenced both by the processing conditions such as heating time and temperature, and the postprocessing storage conditions. The type of formulation additive also affected the extent of degradation. In the presence of polyethylene glycol (PEG)-400, the percentage of relative degradation of THC-HS to THC was 13.5% and 49.4% at 80°C and 120°C, respectively. In contrast, incorporation of vitamin E succinate (VES) reduced processing degradation to 2.1% and 9.2%, respectively, under the same conditions. Severe degradation of THC-HS was observed during storage, even under freezing conditions (-18°C). A VES-Noveon AA-1 combination was observed to best stabilize the prodrug systems both during processing and postprocessing. Stabilization of THC-HS was achieved in these polyethylene oxide matrices at 4°C, with almost 90% of theoretical drug remaining for up to 8 months. Investigation of the pH effect revealed that the pH of the microenvironment in these polymeric systems could be modulated to significantly improve the stability of THC-HS, degradation being the least in a relatively acidic medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call