Abstract

Polymer concrete composites have been made from orthophthalate-type unsaturated polyester resin, methyl ethyl ketone peroxide as initiator, cobalt naphthenate as accelerator and desert sand as filler. Composites preferred using resin (10-25 per cent), initiator (4 per cent) and accelerator (2 per cent) with representative desert sand samples of different particle sizes (0.2-0.02 mm, 2-0.2 mm and 4-2 mm) as filler recorded unconfined compression strength ranging from 4 to 442 kg/cm/sup 2/ after curing at 50 degree centigrade in an oven for 0.5-24 h. Using coarse and fine sand samples with 10 and 15 per cent resin systems the maximum strength of 391 and 326 kg/cm/sup 2/ respectively was attained after 2 h of curing at 50 degree centigrade. The fast setting resin system with strength in this range is quite adequate for the construction of chemically stabilised surfaces, which withstand trafficability of vehicles, operation of helicopters and aircraft's requiring a maximum strength up to 275 kg/cm/sup 2/. These composites may prove useful for rapid repair of roads, helipads and runways damaged during operational activities. A mathematical model has been developed for predicting resin percentage needed for obtaining composite material of requisite strength. The observed and model predicted values have been found to show close agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.