Abstract

The chemical specificity and structural requirements of short-chain fatty acids (SCFAs) in stimulating pancreatic endocrine responses was investigated in conscious sheep. Normal SCFAs with one to eight carbons were injected intravenously at seven doses of 39-2,500 mumol/kg body wt. The isomers or derivatives of SCFAs were administered at 625 mumol/kg body wt. Analysis of dose-response curves showed that n-butyric acid (4 carbons in the molecule) was most effective for both insulin and glucagon secretion among the normal SCFAs tested. In addition, one carboxylic group was absolutely required, since hormone secretion was significantly reduced or abolished with compounds in which the carboxylic element was replaced by other groups and with dicarboxylic acids. The form of the hydrocarbon chain (branched, cyclic, or benzoic ring) also affected hormone secretory activity. Most of the compounds that replaced hydrogen in the hydrocarbon chain by other groups at various positions reduced or abolished the hormone secretory effect obtained by n-butyric acid. In conclusion, a monocarboxylic acid with several numbers of hydrocarbons was required for insulin or glucagon secretion. These results suggest that the pancreatic endocrine system can recognize the chemical structure of SCFAs in detail and induce hormone secretion in sheep.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.