Abstract

Radionuclides represent a serious health risk to humans in the case of incorporation. To elucidate the potential of time-resolved laser-induced fluorescence spectroscopy (TRLFS) to determine the dominant radionuclide species in natural biofluids, we investigated the in vitro speciation of curium(III) in human urine samples. Because in speciation studies trivalent lanthanides are often used as analogues for trivalent actinides, we also probed the suitability of this theory by investigating the speciation of europium(III) in human urine. Comparison with reference spectra of both heavy metals in model urine and of their complexes with single organic and inorganic urine constituents then allowed for the determination of the dominant species. Furthermore, the chemical composition of all urine samples was analyzed, and the parameters affecting the speciation of the metals were determined. The pH was found to be the most important parameter because for both, the actinide and the lanthanide, two analogue species were identified in dependence on the pH. In samples with slightly acidic pH a curium(III) and europium(III) citrate complex dominates, respectively, whereas in samples with near-neutral pH a higher complex with phosphate and calcium as the main ligands and the additional participation of citrate and/or carbonate is formed in each case. Comparison with thermodynamic modeling yields some discrepancies, especially at higher pH, which is due to a lack of data for the complex formation of the higher species for both heavy metals. Nevertheless, TRLFS has proven to be a suitable method for the direct determination of the dominant heavy metal species in untreated natural human urine samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.