Abstract

Concentrations of Cd, Co, Cu, Ni and Pb were measured in particulate and dissolved phases at 11 sites located upstream and near Athabasca oil sands development. The in situ discrimination between non-labile and labile dissolved metals was done using diffusive gradients in thin-films (DGT) devices. The DGT-labile fraction of Co and Ni was 30% lower near development sites whereas Cu, Cd and Pb showed minor changes spatially. It was found that an 8-fold increase in dissolved organic matter (DOM) near development induced a rapid decrease in DGT-labile metals. Dissolved metal concentrations were used along with DOM, major ions, nutrients, pH and conductivity to calculate the distribution of dissolved metal species using the speciation model WHAM. Labile-DGT metal concentrations agreed well with WHAM-predicted concentrations. It was also found that a significant amount of metals were associated with the non-DGT labile fraction (i.e. colloidal DOM) and colloid abundance was more important than suspended particulate matter abundance in influencing metal mobility near Athabasca oil soils development. Since changes in colloidal DOM levels are likely to be the result of surface mining activities, this confirms the serious effects of oil sands activities on metal biogeochemical cycles in the lower Athabasca River.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.