Abstract

Epitaxial films of rare-earth (RE) niobates (where the rare earth includes La, Ce, and Nd) and lanthanum tantalate with pyrochlore structures were grown directly on biaxially textured nickel-3 at.% tungsten (Ni-W) substrates using a chemical solution deposition (CSD) process. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis revealed the surface morphology of the films to be smooth and homogeneous. Detailed X-ray diffraction analysis showed that the films of pyrochlore RE niobate and La-tantalate are highly textured with cube-on-cube epitaxy. The overall texture quality of the films was investigated by measuring the full-width half-maximum (FWHM) of the (004) and (222) rocking curves. We observed a sharper texture for both lanthanum niobate (La3NbO7) and lanthanum tantalate (La3TaO7) films compared to the underlying Ni-W substrate, though they have a larger lattice misfit with the Ni-W substrates. These results were comparable to the texture improvement observed in vacuum-deposited Y2O3 seed layers. Texture improvement in the seed layer is the key towards obtaining YBCO films with a␣higher critical current density. Hence, solution-deposited La3NbO7 and La3TaO7 films can be used as a seed layer towards developing all metalorganic-deposited (MOD) buffer/YBCO architectures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call