Abstract

Rathke’s gland secretions (RGS) of Common Musk Turtles have a variety of proposed functions including predator deterrence and attraction, but experimental studies testing these hypotheses are lacking. This study used laboratory and field experiments to test whether RGS had attraction or repellent effects on two natural predators, the Cottonmouth (Agkistrodon piscivorus), and the Common Snapping Turtle (Chelydra serpentina). In a laboratory experiment, we examined latency to feed and consumption times for Cottonmouths offered RGS-treated minnows and control minnows. In a field study, we investigated the ratio of snapping turtles appearing in traps with and without RGS-treated bait. The latency to feed times for Cottonmouths offered RGS-treated minnows were not significantly different from those offered control minnows. However, prey consumption times for Cottonmouths feeding on RGS-treated minnows were significantly greater than those feeding on control minnows. These results suggest that the RGS may lengthen the time of a predation sequence, possibly allowing the turtle more time to escape from the predator. The number of snapping turtles appearing in traps with RGS-treated bait was significantly greater than the number of snapping turtles in traps without RGS-treated bait. These results support the predator attraction hypothesis, where the signal may attract additional predators that interfere with a predation event, providing an opportunity for the prey to escape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.