Abstract
We compiled a data set of the compounds that terrestrial vertebrates (amniotes) use to send chemical signals, and searched for relationships between signal compound properties and signal function. Overall, relationships were scarce and formed only small-scale patterns. Terrestrial vertebrate signalling compounds are invariably components of complex mixtures of compounds with diverse molecular weights and functionalities. Signal compounds with high molecular weights (MWs) and low vapour pressures, or that are bound to carrier proteins, are detected during direct contact with the source of the signal. Stable compounds with aromatic rings in their structures are more common in signals of social dominance, including territoriality. Aldehydes are emitted from the sender's body rather than from scent marks. Lipocalin pheromones and carriers have a limited range of MWs, possibly to reduce the metabolic costs of their biosynthesis. Design constraints that might channel signal chemistry into patterns have been relaxed by amniote behavior and biochemistry. Amniote olfaction has such a high sensitivity, wide range and narrow resolution that signal detection imposes no practical constraints on the structures of signalling molecules. Diverse metabolic pathways in amniotes and their microbial commensals produce a wide variety of compounds as chemical signals and as matrix compounds that free signal components from the constraints of stability, vapor pressure, species-specificity etc. that would otherwise constrain what types of compound operate optimally under different conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.