Abstract

A detailed analysis of peptide backbone amide (H(N)) and H alpha chemical shifts reveals a consistent pattern for beta hairpins and three-stranded beta sheets. The H alpha's at non-hydrogen-bonded strand positions are inwardly directed and shifted downfield approximately 1 ppm due largely to an anisotropy contribution from the cross-strand amide function. The secondary structure associated H alpha shift deviations for the H-bonded strand positions are also positive but much smaller (0.1-0.3 ppm) and the turn residues display negative H alpha chemical shift deviations (CSDs). The pattern of (H(N)) shift deviations is an even better indicator of both hairpin formation and register, with the cross-strand H-bonded sites shifted downfield (also by approximately 1 ppm) and with diagnostic values for the first turn residue and the first strand position following the turn. These empirical observations, initially made for [2:2]/[2:4]-type-I' and -II' hairpins, are rationalized and can be extended to the analysis of other turns, hairpin classes ([3:5], [4:4]/[4:6]), and three-stranded peptide beta-sheet models. The H alpha's at non-hydrogen-bonded sites and (H(N))'s in the intervening H-bonded sites provide the largest and most dependable measures of hairpin structuring and can be used for melting studies; however the intrinsic temperature dependence of (H(N)) shifts deviations needs to reflect the extent of solvent sequestration in the folded state. Several observations made in the course of this study provide insights into beta-sheet folding mechanisms: (1) The magnitude of the (H(N)) shifts suggests that the cross-strand H-bonds in peptide hairpins are as short as those in protein beta sheets. (2) Even L-Pro-Gly turns, which are frequently used in unfolded controls for hairpin peptides, can support hairpin populations in aqueous fluoroalcohol media. (3) The good correlation between hairpin population estimates from cross-strand H-bonded (H(N)) shift deviations, H alpha shift deviations, and structuring shifts at the turn locus implies that hairpin folding transitions approximate two-state behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call