Abstract

To determine the threshold signal drop on 3-T chemical shift imaging (CSI), with in-phase (IP) and opposed-phase (OP) sequences, for accurately identifying bone marrow replacement with 100% sensitivity, and determine a clinically useful measurement method for deriving such a threshold. From a convenience series of 157 MRIs, 36 cases with histologically proven marrow-replacing lesions and 22 sites of red marrow (histologically proven (2) or with minimum 6-month stability) with 3-Tesla CSI were included. Two musculoskeletal radiologists performed two measurement methods (first: multiple algorithmic ROIs at the top, middle, and bottom of lesions (M-ROI); second: an ROI was drawn where there appeared to be the least opposed-phase signal reduction qualitatively/visually (Q-ROI)). Lesional and red marrow signal change (%,[(IP-OP)signal/IP signal]*100) was determined. Statistical analyses included Student's t test, Cohen's kappa, and receiver operator characteristic curve generation. By M-ROI, lesion signal change was -0.508% (confidence interval (CI) = -5.537:4.521) and 1.348% (CI = -3.541:6.311) for readers 1 and 2. By Q-ROI, lesion signal change was -11.03% (CI = -17.01:- 5.046) and - 5.657% (CI = -12.36:1.048) for readers 1 and 2. For all M-ROI and Q-ROI measurement strategies, signal change between lesional tissue and red marrow was significantly different (p < 0.0001). QROI produced the best composite sensitivities and specificities with a maximized Youden index of 0.955-1. A threshold signal drop of 25% with Q-ROI produced at least 100%/86% sensitivity/specificity for both readers for identifying marrow replacement. For 3-T CSI, a single visually targeted measurement using a 25% threshold is accurate for identifying marrow-replacing lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.