Abstract

A spectroscopic imaging technique with high spatial resolution was used for the study of human skin in vivo. The measurements were performed using a whole-body magnetic resonance system (1.5 T) with standard gradients and a standard 8-cm diameter circular surface coil. A decisive gain in signal-to-noise ratio was achieved by reducing the receiver bandwidth of the imaging system to values less than ±5 kHz. The chemical shift misregistration was eliminated by post-detection data processing. The method was tested on different kinds of skin, on the foot sole and head. Water, fat, and chemical shift artifact-free images were obtained with resolution 0.107 × 0.143 mm in plane and slice thickness 1 mm. A major advantage of the spectroscopic imaging procedure is that the pulse sequence can be optimized for the maximum signal-to-noise ratio. There is no need for special modification of the sequence to circumvent the chemical shift artifacts (water, fat suppression, etc.). Magn Reson Med 41:904–908, 1999. © 1999 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.