Abstract
Armillaria fungi are frequently documented as economically and ecologically significant plant pathogens, recognised as the causal agents of Armillaria root rot disease. Armillaria mellea is one of the most aggressive pathogens in the Armillaria genus. None of the chemicals tested against Armillaria have been effective in fully eradicating an established A. mellea mycelium from an infection site and/or preventing plant mortality, which makes studies about the chemical sensitivity of A. mellea essential. In this work, the inhibitory effects of 120 different chemical agents on the growth rate of A. mellea were examined using the Biolog Phenotype MicroArray system of chemical sensitivity panels. Among the tested substances, aromatic and membrane function compounds showed the highest inhibitory activity against A. mellea. Interestingly, our results demonstrated promising potential for application of caffeine as an A. mellea-oriented fungicide. Further studies were conducted to explore the antifungal activity of a low-cost and locally available caffeine-rich waste, i.e. spent coffee grounds (SCG) against A. mellea. It is noteworthy that the hyphal growth of A. mellea was significantly inhibited when cultivated on malt extract agar supplemented with SCG. Current findings uncovered, for the first time, the potential use of caffeine-rich wastes for designing management strategies to practically control the spread of A. mellea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.