Abstract
Intrinsically low electrical conductivity of organic semiconductors hinders their further development into practical electronic devices. Herein, we report on an efficient chemical self-doping to increase the conductivity through one-dimensional stacking arrangement of electron donor-acceptor (D-A) molecules. The D-A molecule employed was a 1-methylpiperidine-substituted perylene tetracarboxylic diimide (MP-PTCDI), of which the methylpiperidine moiety is a strong electron donor, and can form a charge transfer complex with PTCDI (acting as the acceptor), generating anionic radical of PTCDI as evidenced in molecular solutions. Upon self-assembling into nanoribbons through columnar π-π stacking, the intermolecular charge transfer interaction between methylpiperidine and PTCDI would be enhanced, and the electrons generated are delocalized along the π-π stacking of PTCDIs, leading to enhancement in conductivity. The conductive fiber materials thus produced can potentially be used as chemiresistive sensor for vapor detection of electron deficient chemicals such as hydrogen peroxide, taking advantage of the large surface area of nanofibers. As a major component of improvised explosives, hydrogen peroxide remains a critical signature chemical for public safety screening and monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.