Abstract

AbstractThe performance of perovskite solar cells (PSCs) is negatively affected by iodine (I2) impurities generated from the oxidation of iodide ions in the perovskite precursor powder, solution, and perovskite films. In this study, the use of potassium formate (HCOOK) as a reductant to minimize the presence of detrimental I2 impurities is presented. It is demonstrated that HCOOK can effectively reduce I2 back to I− in the precursor solution as well as in the devices under external conditions. Furthermore, the introduced formate anion (HCOO−) and alkali metal cation (K+) can reduce the defect density within the perovskite film by modulating perovskite growth and passivating electronic defects, significantly prolonging the carrier lifetime and reducing the J–V hysteresis. Consequently, the maximum efficiency of the HCOOK‐doped planar n–i–p PSCs reaches 23.8%. After 1000 h of operation at maximum power point tracking under continuous 1 sun illumination, the corresponding encapsulated devices retain 94% of their initial efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.