Abstract

The emerging one-dimensional wire-shaped supercapacitors (SCs) with structural advantages of low mass/volume structural advantages hold great interests in wearable electronic engineering. Although graphene fiber (GF) has full of vigor and tremendous potentiality as promising linear electrode for wire-shaped SCs, simultaneously achieving its facile fabrication process and satisfactory electrochemical performance still remains challenging to date. Herein, two novel types of graphene hybrid fibers, namely ferroferric oxide dots (FODs)@GF and N-doped carbon polyhedrons (NCPs)@GF, have been proposed via a simple and efficient chemical reduction-induced fabrication. Synergistically coupling the electroactive units (FODs and NCPs) with conductive graphene nanosheets endows the fiber-shaped architecture with boosted electrochemical activity, high flexibility and structural integrity. The resultant [email protected] and [email protected] hybrid fibers as linear electrodes both exhibit excellent electrochemical behaviors, including large volumetric specific capacitance, good rate capability, as well as favorable electrochemical kinetics in ionic liquid electrolyte. Based on such two linear electrodes and ionogel electrolyte, a high-performance wire-shaped SC is effectively assembled with ultrahigh volumetric energy density (26.9 mW·h·cm−3), volumetric power density (4900 mW·cm−3) and strong durability over 10,000 cycles under straight/bending states. Furthermore, the assembled wire-shaped SC with excellent flexibility and weavability acts as efficient energy storage device for the application in wearable electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call