Abstract
Crude-oil-inundated soils were collected from the Agbada oil field in the Niger Delta region of Nigeria 2 months after the recorded incidence of oil spillage. The soils were taken on the second day of reconnaissance from three replicate quadrats, at surface (0–15 cm) and subsurface (15–30 cm) depths, using the grid sampling technique. The total extractable hydrocarbon content (THC) of the polluted soils ranged from 1.24 × 102 to 3.86 × 104 mg/kg at surface and subsurface depths (no overlap in standard errors at a 95% confidence level). Greenhouse trials for possible reclamation were later carried out using 10–100 g of (NH4)2SO4, KH2PO4 and KCl (NPK) fertilizer as nutrient supplements. Nitrogen as NO3-N and potassium were optimally enhanced at 2% (w/w) and 3% (w/w) of the NPK supplementation, respectively. Phosphorus, which was inherently more enhanced in the soils than the other nutrients, maintained the same level of impact after treatment with 20 g of NPK fertilizer. Total organic carbon (%TOC), total organic matter (%TOM), pH, and percentage moisture content all provided evidence of enhanced mineralization in the fertilizer-treated soils. If reclamation of the crude-oil-inundated soils is construed as the return to normal levels of metabolic activities of the soils, then the application of the inorganic fertilizers at such prescribed levels would duly accelerate the remediation process. However, this would be limited to levels of pollution empirically defined by such THC values obtained in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.